
Managing State



2

In a WebObjects application, you often have variables whose state you want to 
maintain for a page, across a user session, or across the entire application. For 
example, your application might maintain a shopping cart that each user fills 
with items as he or she progresses through a series of pages and forms.

This chapter describes the different approaches you can use in a WebObjects 
application to store and manage state. Some of the topics covered in the chapter 
are:

• Why do you need to store state?
• How WOApplication manages state
• Using global, session, and persistent variables
• Storing state in the application
• Storing state in the page
• Implementing your own state storage 
• Setting session timeout

Why Do You Need to Store State?

In a WebObjects application, pages aren’t persistent. They’re created at the 
beginning of a transaction, and they disappear at the end. A transaction is 
defined as a client request coming in and a response (usually an HTML page) 
going out. The life of a page actually spans two transactions:

1. First, the WOWebScriptComponentController associated with the page 
generates a response for a given request.

2. The WOWebScriptComponentController then handles the subsequent 
incoming request (such as a request triggered by a user clicking on a 
hyperlink). 

Between these two occurrences, the WOWebScriptComponentController 
associated with a page is destroyed and reconstructed. Any variables in your 
component script that haven’t explicitly been made persistent are lost. 

For most variables, this automatic destruction isn’t a problem. Either the 
variables’ values don’t need to be maintained or you can re-initialize them in 
your script’s awake method. However, some variables need to live beyond the 
natural life cycle of a page. Such variables need to be declared as global, session, 
or persistent. This is discussed in more detail in the section “Variables and 
State.”



3

Managing State How WOApplication Manages State

When you declare a variable as global, it’s maintained by the application across 
the life of the application. When you declare a variable as session or persistent, 
its state is restored when the application receives a request and stored before a 
response is returned.

Storing state is expensive. As users access an application and progress through 
its pages, the application accumulates state information for all active pages in 
what can be multiple sessions. This state can grow to be quite large. 
Consequently, you should use session and persistent variables only where 
necessary.

How WOApplication Manages State

As with most activities in a WebObjects application, state management is 
organized around the request-response loop. The exact steps in a cycle of the 
loop depend on where state is being stored—on the application server (which is 
the default), or in the page. WebObjects uses an NSDictionary to store state data 
in the application—in other words, when you store objects in the application, 
they’re kept intact in memory. (The NSDictionary class stores data as key-value 
pairs; you access a value through its key.) When state is stored in the page, 
however, state data is copied from the application server and archived into an 
NSData object whose ASCII representation is then put into a hidden field in the 
page. (The NSData class provides an object-oriented wrapper for byte buffers.) 
The corresponding state data is subsequently removed from the server. For a 
discussion of the advantages and disadvantages of each approach, see the 
section “Storing State in the Application vs. Storing State in the Page.” For more 
information on NSDictionary and NSData, see the Foundation Framework 
Reference.

Figure 1 illustrates the general sequence of events that occurs when an 
application receives a request (for example, when a user clicks a hyperlink).



Managing State How WOApplication Manages State

4

Figure 1. Handling a Request

The following steps describe in more detail how an application manages state 
when it receives a request:

1. In its handleRequest: method, WOApplication asks the request for the stateID 
in its URL. 

A stateID is a value generated by WOApplication during request handling 
that’s used to store and retrieve state information. A stateID is only present if 
the application has session or persistent variables—otherwise, the value 
returned is nil. 

A stateID is an NSString that has the format sessionIdentifier.key.extension —for 
example, 12.124563322.234. WebObjects doesn’t require this format (in case 
you want to implement your own stateID scheme). However, it may be 
useful to understand why WebObjects takes this approach.

The sessionIdentifier uniquely identifies each user session. To prevent users 
from accessing the pages in another user’s session, the stateID also includes 
a key field. The key is a randomly generated number; you can’t access the 
pages in a session without the proper key. The key also ensures that if an 
application crashes and restarts (thereby renumbering the sessions), an 
existing session is not in danger of having its stateID duplicated. The 
extension is incremented with every transaction, which makes the URL for 
each transaction unique. This prevents the situation in which a user might 

Prepare for Request

Invoke Action

Generate Response

Restore session and
persistent variables

Set variables from
user input

Store session and
persistent variables

Request Page

User performs
an action.

Response Page

User sees the
next page.

Request

Response

Web Browser WebObjects Application



5

Managing State How WOApplication Manages State

be iterating on a single page, but the page is never refreshed since it’s being 
cached by the browser.

2. WOApplication checks to see if there is an NSData object embedded in the 
request. If there is, it means that state is stored in the page (instead of in the 
application).

3. WOApplication restores the state using the method restoreToStateWithID: if the 
state is in the application, or restoreToStateWithID:data: if the state is in the page.

4. The WOApplication object finds or creates an object to represent the request 
page—the page from which the request was made.

5. The WOApplication object sends the request page object a 
prepareForRequest:inContext: message which stores user input in objects.

6. The WOApplication object sends the request page object an 
invokeActionForRequest:inContext: message. This method invokes an action 
method if one has been triggered, and determines which object to use to 
generate the response. This is described in more detail in the chapter “Inside 
the Request-Response Loop.”

7. WOApplication gets a new stateID. If no stateID existed before, an entirely 
new one is created. If there is an existing stateID, then the last part of the 
stateID (the extension) is incremented—this ensures that every transaction 
has a unique stateID. The first two fields of the stateID stay the same.

The stateID method also snapshots the session and persistent variables and 
stores their state (whether in the application or in the page).

8. WOApplication checks to see if state should be stored in the response page—
that is, if the page contains a WOStateStorage element (this is described in 
more detail in the section “How to Store State in the Page”).

If so, WOApplication invokes stateDataForID:, which takes the state stored in 
the application, archives it into an NSData object, and returns the NSData 
object. The WOStateStorage element then puts an ASCII representation of 
this NSData object into a hidden field in the page.

9. The WOApplication object sends a generateResponse:inContext: message to the 
object representing the response page. The method generateResponse:inContext: 
generates HTML for the page.

State is frozen before a response is generated (it was frozen in Step 7, when 
the stateID method snapshotted session and persistent variable values and 
stored them). If you modify session or persistent variables during a response, 



Managing State Variables and State

6

those changes will be lost. The stored state will be used to restore state 
across your session the next time the application handles a request.

10.If you’re storing state in the page, WOApplication removes the 
corresponding state from the server using removeStateDataForID:.

11.WOApplication performs garbage collection. Specifically, it removes the state 
for sessions that have timed out. This doesn’t happen for every transaction—
it’s time-based.

Variables and State

To store a variable’s state in a WebObjects application, you declare it as global, 
session, or persistent. 

The following table summarizes the different types of variables and their scope. 
For a comprehensive discussion of variables and scope, see the chapter “Using 
WebScript.”



7

Managing State Variables and State

Variable Type Where It’s Declared How You Declare It Where It’s Visible How Long It Lives

Local Inside a method in either 
an application or a com-
ponent script

id myVar; Only inside the method 
in which it’s declared

For the duration of the 
method

Transaction Outside a method in a 
component script

id myVar; Inside the script in 
which it’s declared

For the duration of a 
transaction, which is 
defined as a request 
coming in and a 
response (usually an 
HTML page) going out

Persistent In WebScript:
Outside a method in a 
component script

In WebScript:
persistent id myVar;

In WebScript:
Inside the script in 
which it’s declared

For the duration of a 
session

In Objective-C:
In a class that’s subclassed from WOComponentController, declare a per-
sistent variable just as you would any instance variable. Then implement 
the persistentKeys method. This method returns an array of the key names 
of the instance variables you want to make persistent. Persistent variables 
you declare in Objective-C are only visible within the class in which 
they’re declared.

Session In WebScript:
Outside a method in an 
application script

In WebScript:
session id myVar;

In WebScript:
In the application script. 
Component scripts can 
access session vari-
ables by messaging the 
application. Every ses-
sion has its own version 
of a session variable.

For the duration of the 
session

In Objective-C:
In a class that’s subclassed from WOWebScriptApplication, declare a 
session variable just as you would any instance variable. Then implement 
the sessionKeys method. This method returns an array of the key names of 
the instance variables for which you want to store state across a session. 
Session variables you declare in Objective-C are only visible within the 
class in which they’re declared, but they can be accessed by messaging 
the application object.

Global Outside a method in an 
application script

id myVar; In the application script. 
Component scripts can 
access global variables 
by messaging the appli-
cation. Every session 
sees global variables 
with the same value.

For the duration of the 
application



Managing State Storing State in the Application vs. Storing State in the Page

8

Note: A persistent variable is identical to a session variable except that it’s scoped 
to the page in which it is declared.

Storing State in the Application vs. Storing State in the Page

By default, WebObjects stores state on the application server. However, it also 
provides a mechanism for storing state in the page. This section discusses the 
advantages and disadvantages of each approach. Note that for a given page, you 
can’t mix approaches, though you can use different approaches for different 
pages in an application.

Advantages of State in the Application
The advantages of storing state in the application are as follows:

• Simplicity

Because state in the application is the default in WebObjects, you don’t have 
to do any extra work to achieve it. All you have to do is declare session and 
persistent variables, and their state is automatically stored in the application.

• Security

When you store state in the page, it’s conceivable that the data could be 
modified by users. This isn’t a problem when you store state in the 
application.

Disadvantages of State in the Application
The disadvantages of storing state in the application are as follows:

• Scalability (limited to one application)

You can’t use round-robin to service requests for a given session since every 
request from that session has to go back to the same application on the same 
server.

• Scalability (your application can consume a lot of memory)

When you store state in the application, your application grows with each 
request. Your state and thereby your application can consume a lot of 
memory. This isn’t the case when you store state in the page.



9

Managing State Storing State in the Application vs. Storing State in the Page

• Reliability

If your server crashes, you lose your state. This doesn’t happen when you 
store state in the page—your server could crash and reboot, and as long as 
the user’s browser is still running, the state is maintained in the application’s 
pages.

Advantages to State in the Page
The advantages to storing state in the page are as follows:

• Scalability (not limited to one application)

When you store state in the application, every request for a given session has 
to go back to the same application on the same server. This isn’t the case 
when you store state in the page—you can use a round-robin approach that 
performs load balancing across multiple versions of your application running 
on multiple servers.

• Scalability (application doesn’t grow)

When you store state in the page, your application doesn’t grow with each 
new session and request.

• Reliability

When you store state on the page, your state isn’t dependent on the 
application. The server can crash and reboot, but as long as a user’s browser 
is still running, the state continues to be stored in the pages of the 
application.

Disadvantages to State in the Page
The disadvantages to state in the page are as follows:

• If your application has a lot of state, this means that a lot of data has to be 
passed from the user’s browser to the application with every request.

This could degrade your application’s performance.

• Security

WebObjects doesn’t encrypt the data stored in a page (though you can 
implement your own encryption). Users could conceivably access and 
modify the data stored in a page, which wouldn’t be a problem with state 
stored in the application.



Managing State Storing State in the Application vs. Storing State in the Page

10

• Frames

Storing state in the page is a problem if the “pages” in question are frames. 
Your state can quickly get out of sync. For example, suppose you have a mail 
application with two frames. One of the frames shows a list of messages with 
one message selected, and the other frame shows the text of the selected 
message. If you delete the message in the top frame, the state of the bottom 
frame isn’t updated (unless you implement your own solution). If you’re 
using frames, it’s preferable to store state in the application.

• The only way to pass your state input to the application is by submitting a 
form.

State in the page is stored in hidden fields. The contents of hidden fields can 
only be passed in a URL when you submit a form. This constrains your user 
interface—you have to use a button or an active image to perform an action 
in a page; otherwise your state information will be treated as if it doesn’t 
exist. Note that you must use a button or active image; even if a hyperlink is 
placed inside of a form, clicking it won’t have the effect of submitting the 
form.

• Need to implement archiving for custom objects

When state is stored in the page, objects are archived into an NSData object. 
If you have custom classes for which you need to store state, they must know 
how to archive and unarchive themselves (see the section “Storing State for 
Custom Objects” for more information). This isn’t required for storing state 
in the application. This restriction only applies to custom classes—most of 
the Foundation classes you’ll use already implement archiving and 
unarchiving.

• If a user restores state from an old page, it overwrites a session’s current state.

For example, suppose your application has a shopping cart object that users 
fill with items. A user might have put flowers in it on one page, and then put 
a t-shirt in it on a later page. If the user backtracks to the flower page and 
changes the order, the t-shirt is no longer included in the current state.



11

Managing State How to Store State in the Page

How to Store State in the Page

By default, when you use session and persistent variables, their state is stored in 
the application. However, you can also choose to store state in the page. To store 
state in the page:

1. In the HTML template associated with the page, add a WebObject that 
represents the state you want to store:

<WEBOBJECT NAME="FORM">
<WEBOBJECT NAME = "STATE"></WEBOBJECT>
<WEBOBJECT NAME = "NAME_FIELD"></WEBOBJECT>
<P> 
<WEBOBJECT NAME = "SUBMIT_BUTTON"></WEBOBJECT><P>

</WEBOBJECT>

Notice that this WebObject is declared inside a form This is required since 
the state will be stored in a hidden field, and in HTML, hidden fields have 
to be inside forms.

2. Add a corresponding declaration to the declarations file associated with the 
page:

STATE: WOStateStorage{ };

When you run your application, your state is stored as the ASCII representation 
of an NSData object in the location you specified in your HTML template.

Note: If your page has multiple forms and you’re storing state in the page, you 
should include a WOStateStorage element in each form. If you fail to do this, 
when you submit a form that doesn’t have a WOStateStorage element in it, all 
of your state will be lost.

Storing State for Custom Objects
When state is stored in the page, objects are archived into an NSData object. If 
you have custom classes for which you need to store state, they must know how 
to archive and unarchive themselves. To achieve this, your custom classes must 
conform to the NSCoding protocol and implement its encodeWithCoder: and 
initWithCoder: methods. encodeWithCoder: instructs an object to encode its instance 
variables to the coder provided; an object can receive this method any number 
of times. initWithCoder: instructs an object to initialize itself from data in the coder 
provided; as such, it replaces any other initialization method and is only sent 
once per object.



Managing State Implementing Your Own State Storage

12

Note: Most of the Foundation classes already conform to the NSCoding protocol. 
This section only applies to the custom classes you write yourself.

For example, the DodgeDemo ShoppingCart class in the WebObjects examples 
includes the following implementations for encodeWithCoder: and initWithCoder:.

- (void)encodeWithCoder:(NSCoder *)coder {
[super encodeWithCoder:coder];
[coder encodeObject:carID];
[coder encodeObject:colorID];
[coder encodeObject:colorPicture];
[coder encodeObject:packagesIDs];
[coder encodeObject:downPayment];
[coder encodeObject:leaseTerm];

}

- initWithCoder:(NSCoder *)coder {
self = [super initWithCoder:coder];
carID = [[coder decodeObject] retain];
colorID = [[coder decodeObject] retain];
colorPicture = [[coder decodeObject] retain];
packagesIDs = [[coder decodeObject] retain];
downPayment = [[coder decodeObject] retain];

 leaseTerm = [[coder decodeObject] retain];
 car = nil;

return self;
}

Note: If you’re developing WebObjects applications on Windows NT, your code 
shouldn’t invoke [super encodeWithCoder:coder] . This is because in the 
version of the Foundation Framework running on Windows NT, NSObject 
doesn’t conform to the NSCoding protocol.

For more information on archiving, see the NSCoding, NSCoder, NSArchiver, 
and NSUnarchiver class specifications in the Foundation Framework Reference.

Implementing Your Own State Storage

WebObjects provides direct support for storing state in the application and in 
the page. However, you can also implement your own state storage—for 
example, you might want to use a database or Netscape “cookies” to store state. 
Cookies are used to store state in the client. They have all of the advantages of 
WebObjects’ “state in the page” solution, and some additional ones, such as 
working with hyperlinks and frames.



13

Managing State Implementing Your Own State Storage

You can either implement a simple custom solution (for example, your 
application could maintain a session state instance variable and restore it in 
awake), or you can base your approach on WOApplication’s state handling API.

Example: FaultTolerantApplication
The following example, FaultTolerantApplication, shows one approach to 
implementing a custom storage solution. FaultTolerantApplication is a subclass 
of WOWebScriptApplication that archives state in the file system. Its name 
derives from the fact that because it archives state in the file system, no more 
than the last interaction in a session can ever be lost.

FaultTolerantApplication includes the following methods:

• stateID (overridden from WOApplication)

This method invokes [super stateID] , which stores the state in the 
application and returns a new stateID. The method then invokes the 
WOApplication method stateDataForID:, which takes the state in the 
application, archives it into an NSData object, and returns the NSData 
object. Finally, the method stores the NSData object in the file system and 
removes the state from the server.

• restoreToStateWithID: (overridden from WOApplication)

This method retrieves the NSData object that the stateID method stored in 
the file system. It then invokes [super restoreToStateWithID:aStateID 

data:stateData] , which restores the session’s state from the NSData 
object.

• storeIDFromStateID: 

This method constructs a storeID out of the first two fields of the stateID, 
and returns it. This method is invoked from stateFilePathForStateID:, which uses 
the returned storeID to construct a path for the file used to store the state.

• stateFilePathForStateID: 

Given a stateID, this method returns a file path based on the stateID. This 
method is invoked by both stateID and restoreToStateWithID:, which use it 
respectively to create and find the file holding the application’s state.

The header (.h) and implementation (.m) files for FaultTolerantApplication are 
listed below.



Managing State Implementing Your Own State Storage

14

FaultTolerantApplication.h
#import <WebObjects/WOWebScriptApplication.h>

@interface FaultTolerantApplication:WOWebScriptApplication

@end

FaultTolerantApplication.m
#import "FaultTolerantApplication.h"

@implementation FaultTolerantApplication

- (NSString *)storeIDFromStateID:(NSString *)aStateID 
{

NSArray *stateIDComponents = [aStateID componentsSeparatedByString:@"."];
NSString *storeID = nil;

    
if (!stateIDComponents)

storeID = nil;
 else if ( ([stateIDComponents count] != 3) ) 

[NSException raise:NSInvalidArgumentException 
format:@"Invalid state ID: %@.", aStateID];

else 
storeID = [NSString stringWithFormat:@"%@.%@", 

[stateIDComponents objectAtIndex:0], 
[stateIDComponents objectAtIndex:1]];

return storeID;
}

- (NSString *)stateFilePathForStateID:(NSString *)aStateID 
{

NSString *storeID = [self storeIDFromStateID:aStateID]; 
NSString *stateDirectory = [self pathForResource:@"State" ofType:@""];
NSString *stateFilePath = [NSString stringWithFormat:@"%@/%@", 

stateDirectory,  storeID];
return stateFilePath;

}

- (void)restoreToStateWithID:(NSString *)aStateID 
{ 

NSString *stateFilePath;
NSData *stateData;

    
// Get the path for the state archive file and read the state NSData
stateFilePath = [self stateFilePathForStateID:aStateID];
stateData = [[[NSData alloc] initWithContentsOfFile:stateFilePath] autorelease];

    
// Restore the stateData as the state for the current session
[super restoreToStateWithID:aStateID data:stateData];

}

- (NSString *)stateID 
{



15

Managing State Setting Session TimeOut

NSString *newStateID;
 NSData *stateData;

NSString *stateFilePath;

// Ask the application to capture the state for the session (snapshot all 
// the persistent and session keys for all the active pages in the session), 
// and to return a new stateID (stateID for the current interaction in the
// session).
newStateID = [super stateID];

    
// Now that the session state has been prepared, ask the application for it 
// (in an NSData form).
stateData = [self stateDataForID:newStateID];

    
// Write the session state to the appropriate file
stateFilePath = [self stateFilePathForStateID:newStateID];
[stateData writeToFile:stateFilePath atomically:NO];

    
// Make sure that the application does not keep its own copy of the state 

 [self terminateSession]; 
return newStateID;

}
@end

Setting Session TimeOut

WOApplication includes two methods for explicitly collecting and removing all 
of a session’s state from the application: 

• terminateSession

This method clears the state for a given session. You might choose to invoke 
this method from an action that represents the end of a user’s interaction 
with an application, for example:

- registerMe
{

//... process data...
[WOApp terminateSession];

}



Managing State Summary

16

• setSessionTimeOut:

This method sets the amount of time a session can be inactive before it’s 
timed out. By default sessions don’t time out. For example, you could 
include the following in your application script’s awake method:

- awake 
{

    // Time out sessions that have been inactive for more than 2 minutes
    [WOApp setSessionTimeOut:120];

}

You can use these methods to control the size of your process and thereby 
improve your application’s performance. For more information, see the class 
specification for WOApplication.

Summary

Why Do I Need to Store State?
You need to store state because pages aren’t persistent in a WebObjects 
application. Variables that aren’t session or persistent only live for the duration 
of a transaction, which is defined as a client request coming in and a response 
page going out.

What Are My Options for Storing State?
You can:

• Accept the default WebObjects behavior of storing state in the application 
server

• Store state in the page

• Implement your own state storage solution by subclassing 
WOWebScriptApplication

What Are the Basic Differences Between Storing State in the 
Application and Storing State in the Page?
When you store state in the application, objects are stored intact in memory. 
When you store state in the page, objects are archived into an NSData object, 
and the ASCII representation of the NSData object is put in the dynamically 
generated HTML page.



17

Managing State Summary

What Do I Need to Do to Store State?
You need to declare variables for which you want to store state as either session 
variables (in the application script) or as persistent variables (in a component 
script).

When you store state in the application, you don’t have to do any extra work 
beyond declaring variables as session or persistent. When you store state in the 
page, you have to put a WOStateStorage element inside of a form in your page’s 
HTML template. Also, all of the objects for which you’re storing state in the 
page must be able to archive and unarchive themselves—this isn’t a 
requirement for state in the application.

Can I Mix Approaches?
You can use different approaches (state in the application or state in the page) 
for different pages in your application. However, you can’t mix approaches on a 
single page.


